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Motivated by physiological flows in capillaries, venules and the pleural space, the
pressure-driven flow of a Newtonian fluid in a two-dimensional wavy-walled channel
is investigated theoretically. The sinusoidal wavy shape is due to the configuration of
underlying cells, their nuclei and intercellular junctions or clefts. The walls are lined
with a thin poroelastic layer that models the glycocalyx coating of the cell surface.
The upper and lower wavy walls are offset axially by the phase angle &, where
@ =0 (m) yields an antisymmetric (symmetric) channel. Biphasic theory is employed
for the poroelastic layer and the flow is solved by a lubrication approximation
using a small parameter, § < 1, where § is the channel width/wavelength ratio. The
velocity fields in the core and layer are determined as perturbation expansions in
8% and finite-Reynolds-number effects occur at O(8%) assuming §°Re < 1. When the
hydraulic resistivity, «, the ratio of the channel width to the Darcy permeability, is
sufficiently large and @ is near enough to m, the flow develops a trapped recirculation
eddy within the glycocalyx layer near the widest part of the channel. This can
be of significance to transport through the cellular boundary, since that location
corresponds to intercellular clefts through which important fluid and solute exchange
occurs. Increasing |@ — n| diminishes the recirculation region. Increasing the Reynolds
number moves the recirculation slightly upstream. Both layer velocity and wall shear
stresses decrease as « increases and support the appearance of flow recirculation.
Further, the wavy geometry allows a portion of the flow to enter and exit the layer,
which provides a mechanism for convective transport between these two regions that
otherwise have only diffusive interactions. The relevant Péclet number is Pe=V,"b/D
where D is molecular diffusivity and V, is the normal velocity to the glycocalyx layer.
For large molecules, Pe= O(10%) or higher, so the convective transport is important.
The solid displacement, dictated by the layer flow field, increases as « increases.

1. Introduction

Transport in and across capillary blood vessels and intrapleural membranes plays an
essential role in maintaining metabolism and fluid balance of surrounding tissues. A
fundamental question in understanding the flow behaviour in this in vivo environment
is related to the role of the thin fibre matrix layers that coat the cells. One of the most
important of these layers for blood vessels is the endothelial glycocalyx that uniformly
coats the luminal surface of the vascular endothelium. It consists of oligosaccharide
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chains covalently bound to membrane protein, lipids and polysaccharide chains of
integral membrane proteoglycan molecules. Plasma proteins such as fibrinogen and
albumin, can also be adsorbed and thus contribute to the fibre matrix of macro-
molecules that comprise the glycocalyx. The thickness of the layer has been estimated
to vary from 0.1 um in vitro (Adamson & Clough 1992) to 0.4-0.5 um in vivo (Vink &
Duling 1996), or even more than 1pm by estimating microvascular flow resistance
(Pries et al. 1997). From a hydrodynamic point of view, this layer can be regarded as
a hydrated gel with fibre volume fraction between 1% and 2% (Weinbaum, Tsay &
Curry 1992). This extracelluar layer also provides a selectively permeable barrier to
the passage of macromolecules from the blood to the extracellular space. To serve this
function, the fibre space must at least sieve albumin and other plasma proteins, which
implies the interfibre distance, A <7nm (Weinbaum 1998). This has been strongly
supported by the experiments of Henry & Duling (1999).

The presence of the surface glycocalyx has drawn attention to work on capillary
haemodynamics and red cell motion. It is well known that haematocrit in capillaries
is much lower than systemic haematocrit. However, it is only partly accounted for by
the Fahraeus effect (Fahraeus 1928). It is now believed that a reduction of haematocrit
in capillaries can be reasonably explained by taking account of the glycocalyx (Pries
et al. 1997), as earlier proposed by Desjardins & Duling (1987). There are numerous
theoretical studies in this area. Most earlier models treated red cells as either rigid or
deformable pellets moving in a straight capillary without accounting for the presence
of a porous layer (Wang & Skalak 1969; Tozeren & Skalak 1978; Secomb et al. 1986).
To account for the interaction between red blood cells and the porous layer, Wang &
Parker (1995) and Damiano et al. (1996) applied lubrication and binary mixture
theory (Mow et al. 1980) to describe the motion of rigid particles in a tube coated by
a porous layer. Damiano (1998) and Secomb, Hsu & Pries (1998) have extended their
model to a deformable cell moving within the core fluid, but the former also included
analysis of a flow in a coated-layer capillary without red blood cells. They all showed
that flows are significantly retarded by the porous layer. Feng & Weinbaum (2000)
developed a more general lubrication theory to account for a highly compressible
porous layer, a result of red blood cell penetration into the glycocalyx. They showed
that there is a much greater repulsive force than that predicted by classical lubrication
theory. Their model can explain recent experimental measurements for the apparent
viscosity of blood (Pries et al. 1994). As such, the influence of the glycocalyx layer on
haemodynamics in a straight capillary has been appreciated. However, the vessel wall
is made of endothelial cells whose shape is typically non-uniform along the vessel. It
is therefore essential to characterize the effects of wall geometry on the flow field.

We should first understand how wavy geometry changes flow patterns. There are
numerous studies for steady flows over wavy boundaries. We focus primarily on
flows with low Reynolds numbers that are applicable to microvascular systems. We
are particularly interested in the flow-separation phenomenon induced by uneven
boundaries because it is critical to mass transport. Pozrikidis (1987) numerically
investigated a pressure-driven Stokes flow in a wavy channel, and showed that the
flow can separate and form a recirculation in the widest part of the channel, depending
on parameters such as channel width, wavelength and amplitude of the wavy
wall. Clearly, larger channel width, shorter wavelength or large amplitude make flow
separation more feasible. Flow separation occurs when a local adverse pressure
gradient induced by local variations of the geometry is strong enough to reverse
flow so that the corresponding wall shear stress or vorticity changes sign. It is worth
noticing that boundary or shear-driven flows have a greater likelihood of separation
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even in a nearly parallel channel (Middleman 1998). This is because no external
driving force is available to overcome a gradually developing adverse pressure when
the flow passes a wider part of the channel (Pozrikidis 1987).

Since free-surface or two-phase flows bear some hydrodynamic similarities to the
flow in a capillary blood vessel, it is also instructive to see the effect of a wavy boundary
on such flow systems for understanding the mechanism of flow separations. For a
free-surface flow down a wavy inclined plane (Pozrikidis 1988), a flow recirculation
occurs in the wall valley for a sufficiently large liquid thickness or high flow rate.
A study of core—annular flow of two immiscible fluids in a tube of slowly varying
cross-section (Kouris & Tsamopoulos 2000) showed that there is flow separation in
the annular region at sufficiently large Re. This critical value of Re decreases when
the core to annulus viscosity ratio is reduced.

Flow separation is possible for flow in porous media. A study of fluid motions in
the glycocalyx layer driven by moving red cells demonstrated that low permeability
enhances the degree of flow recirculation (Feng & Weinbaum 2000). As mentioned
earlier, the characteristics of the wall geometry are a deterministic factor in causing
flow separation. The effects of waviness and the glycocalyx layer have been studied by
Waters, Liu & Grotberg (1997) and by Secomb, Hsu & Pries (2002). The latter analysis
includes the presence of moving deformable red blood cells in wavy capillaries with
the glycocalyx layer. The results in Secomb et al. (2002) suggest that the presence of
the glycocalyx layer reduces the impact of wall waviness on flow resistance. However,
it is not clear how the wall waviness affects the flow even in the absence of red blood
cells, particularly for the region between two adjacent red blood cells. In this case, it
is necessary to consider the coupling of the luminal flow to the glycocalyx layer. This
coupling can change the flow patterns and stress distributions, which in turn may
influence molecular transport and cellular response.

The present study excludes the presence of red blood cells and can be regarded as
modelling the flow regions between them. When red cells are present, the pressure
distribution along the cell surface, which is in close proximity to the capillary wall,
depends on the free-stream pressure in the region we are modelling. In addition, our
model is also applicable to the flow in the pleural space of the lung. We consider a
simplified two-dimensional model of the blood vessel lined with the wavy endothelium
whose surface is coated by the glycocalyx layer, a poroelastic medium of uniform
thickness. We shall follow the approach by Damiano et al. (1996) and Wang &
Parker (1995) and employ biphasic mixture theory (see the Appendix) to describe the
poroelastic medium. By assuming small aspect ratio of the mean channel width to
the wavelength (i.e. size of an endothelial cell), we shall apply lubrication theory to
the motion of both core and layer fluids and demonstrate how the presence of the
glycocalyx couples to the wall variation to affect flow patterns, particularly for flow
separation.

2. Governing equations and boundary conditions

Consider the steady flow of two fluids in a two-dimensional wavy channel (see
figure 1). The top and bottom channel walls are located at y* = B (x")=b(1+a cos(2r/
Lx")) and y" =B, (x")=—b(1+acos(2n/Lx" — ®)), respectively. The channel has a
mean width of b. The channel wall has an amplitude of ba and a wavelength of L. The
top and bottom walls have a phase difference of @. A poroelastic glycocalyx layer with
a uniform thickness €b lines the wall. Therefore, the permeable interfaces are located
at y"=H(x")=B(x")+ (—1)'eb, i =1, 2 for the top and bottom portions. The core
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FIGURE 1. Wavy-walled channel with a uniformly thick poroelastic layer.

is a Newtonian fluid with viscosity u; and occupies the region Ho(x")<y* < H(x").
The fluid with viscosity u, flows within the poroelastic layers H; (x*) <y* < B(x")
and B;(x") <y" < H;(x"). Both fluids are assumed to have the same density p.

We now scale x* and y* by L and b, respectively. Let Q be the characteristic
volumetric flow rate per unit depth into the channel. Then axial and vertical velocity
scales are Q/b and Q/L, respectively. The pressure is then scaled by u; QL/b’. Let
8=>b/L be the aspect ratio of the channel and define the Reynolds number to be
Re=pQL/ub. For the core we denote (U, V, P) to be the axial and vertical velocities
and the pressure, respectively. The resulting dimensionless governing equations for
the core are:

U, + Vy =0, (21)
8’Re(UU, + VU,) = —P, + U,, + 8°U,., (2.2)
8*'Re(UV, + VV,) = —P, +8*V,, +8'V,,. (2.3)

The poroelastic layer consists of fluid and solid phases. According to biphasic theory
(Mow et al. 1980) (also see the Appendix), the velocities of the solid phase are
generally non-zero and couple to those of the fluid phase. However, for a steady
state, the solid velocities should be zero. As such, for the fluid phase, let (u, v, p) be
the axial and vertical velocities and the pressure, respectively, then the dimensionless
governing equations (see (A 1) and (A 2) in the Appendix) for the fluid phase with
zero solid velocities become

uy +vy, =0, (2.4)
o’u = —pr +u,, + U, (2.5)
m »
a8ty = —gpy + 8%vy, + 8%, (2.6)
m

Here, ¢ is the volume fraction of the fluid in the poroelastic layer and m = u,/uy
is the viscosity ratio of the core to the layer fluids. The dimensionless hydraulic
resistivity « is defined in terms of K, the Darcy permeability parameter:

(2.7)
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which is assumed to remain constant. As a result, the flow field of the fluid phase is
uncoupled from the solid phase. It is worth noting that the forms of (2.5) and (2.6) are
Brinkman-type equations (Brinkman 1947). For the solid phase, the axial and vertical
displacements are scaled by § and b§. Let (u*, v*) be the corresponding dimensionless
displacements, then the governing equations (see (A 5) in the Appendix) for the
solid displacements are,

1 _
—a’u = —7¢px + iy, + 8, 4+ n(x 4+ 187 (ul, +v),), (2.8)

1 _¢ s s K s
—a’8% = —pr +ns? (v),y + vyy) +n(x + 1)8? (vyy + uxy), (2.9)

where x = A,/ is the ratio of the Lamé coefficient A, to the shear modulus pu, of the
solid phase and 1 = u,b*/1u, Q. The left-hand sides of (2.8) and (2.9) are the results of
neglecting the solid phase velocity. As a result, the solid displacements are dictated
by the flow field of the fluid phase, and they can be obtained once the flow field is
known.

Let the subscript i =1, 2 denote the top and the bottom portions of the flow geo-
metry, respectively. Then, the system is subject to the following boundary conditions.
The fluid velocities vanish on the walls at y = B;(x),

W=0. v=0. (2.10)
There are no solid displacements along the walls at y = B;(x),
uw'=0, v'=0. (2.11)

The boundary conditions at the core—layer interface (Hou et al. 1989) can be approx-
imately applied at the stationary interface because of a small-deformation assump-
tion for the poroelastic layer. At the interface y = H;(x), the effective forms of
continuous velocity across the permeable interfaces (see (A6) and (A7) in the
Appendix) yield

U=¢u, V=¢pv. (2.12)
The stress conditions at the core—layer interfaces (see (A 9)—(A 11) in the Appendix)
are as follows. The tangential stress conditions y = H;(x) are

¢((1—8°H2)(Uy + 8 Vi) +28°H; (V, — U,))
=m ((1 — 621'-15)(uy +8%v,) + 252H,-l(vy — ux)). (2.13)
Similar stress conditions at y = H;(x) applied between the core and the solid phase of
the layer yield
(1—)((1—8°H)(Uy + 8° Vi) + 28 Ho(Vy — Uy))
=mn((1—8H?) (u} +8°v}) +28°H; (v, —u})). (2.14)

Finally, the normal stress conditions at y = H;(x) give
2

¢ (—P + 21-1—(3—2[-]2(Vy — HiX(Uy + 82Vx) + 82HZ%UX))

2

=—¢p +2m . — H; (uy + 8%v,) + 8 Hluy).  (2.15)

Trom
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3. Lubrication approximation

With the governing equations and boundary conditions as above, we now begin to
solve the flow fields. We assume that the axial variation of the wavy wall is small, i.e.
8 < 1, this allows us to employ lubrication theory. As such, we can expand the flow
quantities in a perturbation series for small §:

(U, V, P)= (Uy, Vo, Py) +8*(Uy, Vi, P)+....,
(', V', p') = (ub, v, ph) + 8% (uf, Vi, pi) +..., (3.1)
(', v') = (ul, vlf) + 82 (ulf, vi*) +.....
The superscript i =1, 2 denotes the top- and the bottom-layer regions. The first-order
correction is 82, since no terms of order § appear in the governing equations and

boundary conditions. The following subsections are the results of substituting (3.1)
into (2.1)—(2.15) and collecting quantities of similar order in §.

3.1. The leading-order problem

For the core flow at the leading order in 8, by assuming Re= O(1), the governing
equations (2.1)—(2.3) become

Uo, + Vo, =0, (3.2)
0=—Py +U,. (3.3)
0=—P,. (3.4)

y

For the fluid phase of the layer, we omit superscripts i for brevity and the leading-
order governing equations (2.4)—(2.6) are

uo, + vo, =0, (3.5)
@
auyg = ——po, +uo,,, (3.6)
m
0= —gpo_v. (3.7)
m

Note that (3.7) holds for ¢/m > O(8?). More importantly, in (3.6), which derives
from (2.5), « does not have to be O(1) to maintain the balance between the terms; it
may be large since the Darcy term a’uy remains O(1). The reason is as follows. The
pressure gradient p, is O(1) because it is the driving force. For a large «, the flow is
expected to follow Darcy’s law, and balancing p, with the Darcy term in (2.5) leads
to u ~a~2. This result merely states that for large « the correct velocity scales would
be Q/ba? in the axial direction and Q/La” in the vertical direction. We shall later
confirm this large o behaviour from the leading solution of the layer. This argument
is also similar to Feng & Weinbaum (2000) for glycocalyx flow due to the motion of
a red blood cell which is embedded in the compressible glycocalyx layer. Their study
also pointed out that, for large «, an O(1) velocity induces an O(a?) pressure in the
layer.

For the solid phase of the layer, the leading-order horizontal displacement uj is
governed by the leading order of (2.8),

_azuo = —

po, + nuy, - (3.8)
m :

The leading-order vertical displacement v will be determined in the O(8?) problem.
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The leading-order boundary conditions (2.10)—(2.15) are given by

up=0, vy=0 at y=B;(x), (3.9a, b)
u,=0 at y=B;(x), (3.10)
=ouy, Vo=¢vy at y= H;(x), (3.11a, b)
¢Uy, =muo, at y=H(x), (3.12)
(1—$)Uo, =muu, at y=Hi(x), (3.13)
Po=po at y= Hi(x) (3.14)

With the above boundary conditions, we can solve the leading-order flow fields.
Solving (3.2)—(3.4) for the leading-order core flow results in

Up= 3P0, y" + Ay + Ay, (3.15)
Vo= 4Py’ — 1A " — Ay y + As, (3.16)

where Ay, A, and A; are constants of integration.
For the fluid phase of the glycocalyx layers, we solve (3.5)—(3.7) for the velocity
field

ulh = _¢ % 1 4! cosh(a(y — B;)) + d sinh(a(y — By)), (3.17)

. [ al
v = ;LPO (y— B) + (aiBir — i) cosh(a(y — B;))
o o

+(a£ . “;">sinh(a<y—3,->)+b,-, (3.18)

where a!, a, and b; are constants of integration. Ay, A, a, a} and b; are given by the
following.

1_2_ ¢

al —al - (xzm

1 1
b1 = —a%BIX + E([l%)x, b2 = —a%BL + E(a%)x,
Ay =P Fi, Ay= Py F,,

1 2
Py, a,= Py fi, a3 =P [,

X

where we define 8 = —ae, and

1
fr= (2¢? sinh(B) + ma cosh(B)(H; — Ha))
3 h
(PPt — e+ 2sinhip) — bo (12— 1))
(Hy — H») o .
T (297 sinh(B) + ma cosh(B)(Hy — Hy)) (E Sinh(f) + ¢H‘> |
o

= h- (o(Hy — H) + 2sinh(B)),

a?m cosh(B)
Fy = — X sinh(8) + ™ cosh(B) fy — Hi,
« p

2
Fy =~ (1 — cosh(8)) — i sinh(8) — S} — Fi Hy.
a“m
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a) and b; (i =1, 2) are x-dependent and can be determined using (3.9), (3.11a) and
(3.12). Note that Py(x)= po(x) because of (3.4), (3.7) and (3.14). Also note that V; and
vo are solved by applying (3.11b) at y= H;(x) and (3.9b), respectively. To evaluate
unknown P,_, we consider the constant total flow rate across the channel

H, By H,
1=/ Updy + ¢ u})dy+¢/ ugdy. (3.19)
B>

H> H,

Notice that neither the core flow rate nor the layer flow rate individually remain
constants in x since the interface is permeable. This means that, as we shall see, flow
streamlines can pass through the interface. Differentiating (3.19) with respect to x,
and applying continuity, (3.9) and (3.11a) lead to

0= [—Voly = Hi) + ¢vi(y = H1)| + [~Vo(y = Ho) + ¢v5(y = Hy)]. (3.20)

This is identical to (3.115). Since we have applied (3.11b) at y = H;(x) for determining
Vo, the second bracket of (3.20) (which is identical to (3.11b) at y= H,(x)) is
automatically satisfied. Using (3.19), we then can express P;, in terms of known
functions Q(x) as

Py =

X

: (3.21)

] =

A 2 2
O = 4 (H) — ) + }(H} — HI)Fy + (Hy — )P — 9 ¢

¢

+—=—sl
oa’m

nh(8) + 21— cosh(B) fi + % cosh(p) — 1)
Knowing P, , we can determine the leading-order flow fields of both the core and the
fluid phase of the poroelastic layer from (3.15)—(3.18). We would now like to examine
the large o behaviour of uy to confirm our earlier scaling issue for (3.6). For large
«, since fi ~¢/a’m + ¢ /ame*(H, — H,), we can show that F; ~—(H, + H,)/2 and
F>~ H{H,/2 are O(1). Then, (3.21) for large « leads to

Py, ~ (L(H} — H3) — Y(H, + Ho)(H} — H}) + L H, Hy(H, — Hy)) ™,

which is O(1). Therefore (3.17) for the axial fluid velocity of the layer has an
asymptotic behaviour:
U~ _¢ Py,
0 a’m
This confirms our earlier scaling arguments concerning the admissibility of large o
in the asymptotics. Note that (3.22) satisfies boundary conditions on neither the wall
nor the interface. This implies that there are two boundary layers near the wall and
the interface where viscous forces are important. The axial velocity of the core for
large « is Uy~ Py (y* — (H, + Hy)y + HyH,)/2 which is O(1) since the O(1) pressure
gradient balances the viscous term in (2.2). Further, large o behaviour for Uy is
asymptotically the same as the flow in a rigid wavy channel because layers become
almost impermeable.
Using the leading-order axial velocity profile (3.17) in the glycocalyx-layer fluid
phase, we now solve (3.8) with boundary conditions (3.10) and (3.13) for the leading-
order axial solid displacement. The solution is given by

as o> 1. (3.22)
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- 1 ; 1, . .
R (> — BY) + A"(y — B)) — (@i cosh(e(y — By)) + a3 sinh(e(y — B7))).
(3.23)
. 1 AP .
Als = - (—¢Po, H; + (1 — ¢p)A; — ma((—1)'a sinh(B) — dj cosh(B))).
Equation (3.23) suggests that ud~n~'~wu,Q/ub*>. However, for the small-
deformation assumption to be valid, the axial solid displacements should remain

small enough within the layers so that they do not significantly disturb the flow fields
at the layers. That is, u) <e, ie. n>e .

3.2. The O(8*) problem
At 0(8?%), for Re= O(1), the governing equations for the core are

Vo, + Vo, =0, (3.24)
Re(UgUo, + VoUs,) = —Py, + Uy, + U,,,, (3.25)
O0=—P, +V,. (3.26)
For the fluid phase in the layer,
Ui, + v]'V =0, (327)
2 9
a‘up = _Zpl* +uy, +uo,, (3.28)
2 @
a’vy=——p;, +,. (3.29)
The O(8?) system is subject to the following boundary conditions:
up =0, vy=0 at y= B;(x), (3.30)
U= ¢>u1, V= d)vl at y= Hi(x), (331)

¢ (Ui, + Vo, — H> Uy, + 2H; (Vo, — Us,))
=m(uy, + vo, — Hiuoy +2H; (vo, —uo,)) at y=H(x), (3.32)

¢(—Pi+2(Vo, — H,Uy,)) = —¢p1 +2m (v, — Hyup,) at y = Hi(x). (3.33)

Similar to the way we have solved the leading-order flows, we shall again apply the
flow rate constraint

H, B H,
/ Uidy +¢ u}dy+¢/ uidy=0. (3.34)
H2 H1 Bz

The solution to (3.25) for the core is
U = 5Eey° + 5 Esy’ + S Esy* + LE;y’ + 1E2y* + Eiy + Eq, (3.35)
where Ey(x), Ei(x), and E,(x) are unknowns, and

E3 = ReP()X (Fz(P()X Fl)x + Ag) — (POXFI)

xx’

E4y=1RePy (Po, F> + Fi(Po, Fi) — (Posz)x) - Py,

X

E5 = %RePOXPOUFl, E6 = %RePO,CPOU'
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For the fluids in the layers we solve (3.28) with (3.17) for the O(8?%) axial velocity

u} =i cosh(a(y — B1)) +essinh(e(y — B1)) = 5 (v — B) sinh(e(y — By)

P, 2 2 d —
_ 52 (y— Bycosh(a(y— By + 2P0 (2 42— (o=e) g5
2 2m  \a*  o? a? a’

ui =c3cosh(a(y — By)) + ¢y sinh(a(y — By)) — ;—;(y — By)sinh(a(y — B,))

PP, (2 —l—y2>—% (s0 —e2)

at ol

— 2S—4(y—B2)cosh(a(y—Bz))+ (3.37)
o

2m 2 + a2
where c1(x), c2(x), c3(x), ca(x), e1(x), ea(x) are unknowns. Here, the auxiliary functions
So(x), s1(x), s2(x), s3(x), 54(x), d1(x) and d>(x) are given by

POX«\'X

S0 = —p o,
o -m

5= ((a), —ealBy), —aB ((a}), — aalBy,)
2= ((a}), —aalB,) —aB ((al), —adlB),
s3=((a3), —alB,) —aB, ((a}), —aalBy,).
Sa = ((“lz)x - O‘angx)x —aB,, ((a%)x —aalszx),
dy = —a’by + %Po Bi, dy=—a’by+ %Po“ B;.

The unknowns are solved by applying boundary conditions (3.30)—(3.34).
With the above O(8°) and O(8?) flow fields, the streamlines are drawn by introducing
streamfunctions for the core and the layer, respectively:

U=-w, V=, (3.38)
u=—y, v=1. (3.39)

We also expand the streamfunctions in 8% similar to (3.1). The streamfunctions at
each order are then obtained by integrating the corresponding axial velocities with
respect to y.

For the solid displacements, since we expect the O(8°) axial solid displacement to
be rather small compared to the layer thickness, the O(8°) vertical and the O(8?) axial
displacements are even smaller. In addition, we also lack knowledge of x = A,/u, for
solving the O(8?) problem for the solid displacements. We thus do not pursue it any
further.

4. Results and discussion

We have applied biphasic theory for solving the flows up to O(8%). We here assume
that the core fluid and layer fluid have matched viscosity (m =1). For physiological
applications the solid fraction of the glycocalyx layer is usually approximately 1%,
so we assume ¢ =0.99 throughout. Then the system depends on the remaining
parameters §, €, o, a, @ and Re. We first examine the case for the Stokes (Re =0) core
flow in a symmetric wavy channel (@ =m). The streamlines are shown in figure 2(a).
Notice that streamlines pass through the permeable interface between the fluid and
the porous medium. As mentioned earlier, this can be seen from (3.21), which states
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FIGURE 2. (a) The streamlines for ¢ =50, §=0.3, € =0.2, a=0.2, Re=0 and & =n=. Thick
solid lines are the wall (upper) and the interface (lower). The flow is left to right. () The
streamlines within the layer in the vicinity of the widest part of the channel. Parameters are
the same as (a).

that total flow rate across the channel is constant, but the flow rate across each phase
is not. The flow separates in the layer region at the widest part of the channel. The
separation is symmetrical about the wall’s valley because the Stokes flow is reversible.
This flow separation arises from O(8?%) effects, since the leading-order flow follows
the geometry of the wall. Figure 2(b) is a close-up view of the standing vortex in
the valley. This trapped recirculation of the fluid increases residence time of particles
near the valley and is thus potentially critical to the mass transport of dissolved
substances which pass through/across cell-cell junctions. However, lining cells along
the capillary may not necessarily form symmetric configurations. Figure 3 shows the
streamlines for the wall-phase difference @ =0.8n (figure 3a), 0.5n (figure 3b) and 0
(figure 3c). In comparison with figure 2 for a symmetric case @ = m, the recirculation
becomes smaller and starts to move upstream for @ =0.8n. Further decreasing @,
making the walls more in-phase, causes recirculation to disappear. The mechanism of
flow separation is explained below.

The flow separation can be interpreted more easily in terms of the corresponding
axial velocities, as shown in figure 4 for a symmetric channel. We plot the layer
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FIGURE 3. The streamlines for « =50, §=0.3, € =0.2, a =0.2 and Re=0. (a) ® =0.8x,
() @ =0.5,7 (c) @ =0. The flow is left to right.
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FIGURE 4. The corresponding axial velocity profile in the layer for figure 2. (a) x =0.5, (b)
x =0.75. For (c), the right-hand figure is an enlarged view for the small u regime at x =1

velocities at three different axial locations: at the crest x =0.5 (figure 4a), x =0.75
(figure 4b) and at the valley x = 1.0 (figure 4¢). At all locations, increasing « reduces
the layer flow speed because of decreasing permeability. For large o we recall that
u ~a~? and the velocity becomes more uniform across the layer, where Darcy’s flow
dominates, except near the interface and the wall where viscous layers are developed.
In figure 4(c), the flow starts to reverse when « is large enough, as shown in the
enlarged view. We also calculate that no flow separation occurs in the absence of the
layer. This agrees with the creeping flow analysis in a wavy channel (Pozrikidis 1987).
The flow separation can be identified by a sign change in vorticity or wall shear stress.
Figure 5 shows the wall stress distributions for various « in a symmetric channel.
In the absence of the layer, the wall stress is largest where as the presence of the
layer reduces the wall stress. For a smaller «, the wall stress is positive throughout,
indicating no flow separation. Clearly, the magnitude of the wall stress decreases with
increasing « because of slower velocities. For « > 40, the wall stress changes sign over
a small region near x =1, as shown in the enlarged view, indicating flow separation.
Further increases in « increase the size of the recirculation.

All the above suggests that large o favours flow separation. Slow fluid motions of
the layer owing to large « result in small wall shear magnitudes so that effects of O(8?)
stress modifications can be sufficient to reverse the sign. Recall that a non-symmetric
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FIGURE 5. The wall stress distributions for various . § =0.3, ¢ =0.2, a =0.2, Re=0 and
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Wall shear stress

0.5

0.4

0.3

0.2

0.1

0.02

0.01

Wall shear stress

FIGURE 6. The top wall stress distribution for various @. « =50, § =0.3, € =0.2, a=0.2 and

Re =0. The right-hand figure is an enlarged view for the small wall stress regime.

channel diminishes the recirculation, as shown in figure 3. Observing the case of
@ =0.87 in figure 3(a), the widest parts of the channel are located at x ~0.9 ahead
of those of a symmetric channel. This explains that the recirculation shifts upstream.
However, the widest parts of the channel are smaller than those of a symmetric case.
It thus diminishes the size of the recirculation. When further decreasing @, the widest
parts of the channel become even smaller and thus hardly trigger flow separations.
To justify the above, we examine the effect of the wall phase on the top wall shear
stress, as shown in figure 6. At first glance, decreasing @ from 7 decreases the wall
stress. For @ = 0.8 however, the minimum wall stress is less negative than @ =m; but
the location of the minimum wall stress slightly shifts to upstream. These support the
appearance of recirculation, as shown in figure 3(a). The wall stresses of @ =0.51 and
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FIGURE 7. (a) The streamlines for § =0.3, € =0.2, a=0.2, Re=2.0, « =50 and & =n. The
flow is from left to right. (») The layer axial velocity profile near the wall at x =0.9. §=0.3,
€=02,a=02 a=50and & =r.

0 become positive everywhere along the wall. These verify the streamlines observed
in figure 3.

Further, we should expect that the larger « is, the smaller the wall amplitude or the
longer the wavelength required to cause flow separation. However, flow separations
are less likely for a thinner layer because the velocity gradient becomes steeper and
is more favourable to keeping the fluid moving forward.

The above discussion for the flow recirculation is for Re=0 core flow. The core’s
inertia, however, is expected to change recirculation patterns in the layer. We again
use the symmetric channel case to illustrate the inertial effect of the core on the
flow separation. Figure 7(a) shows the corresponding streamlines. In comparison with
figure 2, the flow separation shifts upstream. When the flow starts to pass wider parts
of the channel, the core’s inertia tends to establish an adverse pressure gradient to
reverse the flow. Even though the layer fluid does not have inertia, the tendency of the
core flow reversal is transmitted, via the continuous interfacial velocities and shear



38 H. H. Wei, S. L. Waters, S. Q. Liu and J. B. Grotberg

stresses, through the layer so that the wall stress is further reduced and the layer
flow begins to separate. The shift of the flow separation upstream is thus anticipated
for non-zero Reynolds numbers. It also qualitatively agrees with the study in two
immiscible Newtonian fluids flowing in a core—annular configuration with slowly
varying cross-sections (Kouris & Tsamopoulos 2000). Figure 7(b) shows the core
inertial effect on the layer axial velocity distributions at x =0.9 near the valley. The
above flow recirculation shifting upstream would be a small effect in a capillary
because Re < 1. It, however, at least describes qualitatively what happens for flows
in larger blood vessels when the inertia is important. In this case, molecules probably
reside around cell junctions which are susceptible to some artery disease (Yuan,
Chien & Weinbaum 1991).

We now examine the pressure distribution within the layer. Local pressures together
with shear stresses on cell membranes may trigger cellular responses to stress (Satcher
et al. 1992). The pressure gradient in the layer determines the flow direction, as
dictated by the biphasic theory. To leading order, there is only an axial pressure
gradient and it is always negative, so no recirculation occurs. However, at O(8?) the
transverse pressure gradient becomes non-zero and varies in sign in the recirculation
region. At the same order, the axial gradient can achieve positive values in this
region, thereby yielding the predicted recirculation. Figure 8(a) shows the pressure
distribution along the wall for different axial positions in a symmetric channel. As
expected, a higher o steepens overall pressure drop because of a lower permeability.
The pressure slightly increases near the wall’s valley (x = 1), indicating that an adverse
pressure is developed. The corresponding pressure gradient is shown in figure 8(b)
and is slightly positive near the valley. This pressure gradient near the valley increases
with increasing o for « > 30. Recall that the flow separation occurs for o >40. It
suggests that adverse pressure is not strong enough to cause a flow reversal until
a ~40. For non-symmetric channels, since the wall stresses are smaller then they
symmetric channel, as shown in figure 6, the corresponding pressure gradients are less
steep than that of the symmetric channel.

We have taken solids into account using the biphasic theory for the poroelastic
layer. Figure 9 shows the distribution of the leading-order axial solid displacement at
particular axial position for a symmetric channel. Recall that the solid displacement is
dictated by the flow field. Also notice again that > e~ is required for the small-solid-
deformation assumption to remain valid. Here, we choose n =100, displacement is
0(10~%) which is much smaller than the layer thickness of 0.2. The solid displacement
increases as the permeability decreases. For a larger «, larger pressure gradient is
required to drive the fluid phase through the solid matrix, enlarging the deformation
of the solid phase. Alternatively, because the shear stress in the fluid phase becomes
smaller for a larger «, as evidenced by the axial velocity profiles in figure 4, a larger
portion of the stress must be exerted by the solid phase. Thereby, the deformation of
the solid phase increases with «.

According to the biphasic theory, the contribution of the solid to the flow field is
effectively reflected by (1 —¢) the volume fraction of the solid. Notice that from (3.7),
¢/m remains O(1)>> 8% in order to preserve the small variation of the pressure across
the layer in the leading order. This means that the solid phase cannot be too dense
in the mixture. An allowable range of the solid fraction is roughly 0.01 ~ 0.1 which is
consistent with physiological values. As our results show, within an allowable range
of solid fractions, the solid phase does not change the flow field significantly. We
thus conclude that the major factor that affects the flow patterns is the permeability,
particularly when the permeability is low enough.
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FIGURE 8. (a) The wall pressure distribution for various «. § =0.3, € =0.2, a =0.2, Re=0
and @ =mn. (b) The wall pressure gradient corresponding to (a).

We now turn our attention to the flow rate across the glycoaclyx layers. Since
fluid is allowed to penetrate through the permeable core—layer interface, the flow rate
across the layer is not constant. The flow rate in the layer Q; is evaluated by the
streamfunction difference between the wall and the streamline that gives the maximum
flow rate within the layer. We are also interested in the flow rate Qc; that moves
between the core and the layer because it relates to transport of molecules that can
enter and exit the layer. Q; and Qc; are expressed as percentages of the total flow
rate in figure 10 where we examine the effect of the wall phase @. Figure 10 shows that
increasing @ causes Q; to decrease. This is because the flow resistance in the layer
increases, as suggested in figure 6, for the wall stress distribution. However, increasing
@ promotes Qc;. This can be realized as follows. When the walls are close to the
in-phase configuration, all streamlines are expected to be in phase with the walls. This
reduces the tendency for the stream to enter or leave the layer. Furthermore, Qc¢; is
higher than Q;. Even though the cross-sectional area for Q. is smaller than that
for Q;, the velocity in the Q¢ region is much faster than the layer, recall that most
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FIGURE 9. The distribution of leading-order axial displacement of a solid at x =1 for various
@.8§=0.3,€=0.2,a=0.2, Re=0 and & =m.
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FiGgure 10. The effect of the wall phase @ on the percentage flow rate. Percentage flow rates

that move between the core and the layer are Qc¢r. Those within the layer are Q. € =0.2,
a=0.2,5=0.3 and o = 50.

of layer velocities are small for large o as shown in figure 4. Both Q; and Q. are
less sensitive to the effect of the core inertia. Increasing Re slightly decreases Q; and
increases Qcy.

Figure 11(a) shows the effect of the wall phase @ on the normal velocity on the
core-layer interface V, =v-n. Note that V,(® =0) is not zero, but small (O(107°)).
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FIGURE 11. (a) The effect of the wall phase @ on the normal core-layer interface velocity V,,.
§=0.3,¢=0.2,a=0.2 and Re=0. (b) The effect of the wall phase o on the normal core-layer
interface velocity V,. § =0.3, € =0.2, a =0.2, Re=0 and ¢ =0.5n.

Increasing @ increases V, because the less in-phase streamlines have a stronger
tendency to enter or leave the layer. This also supports the behaviour of Q¢ in
figure 10. The effect of « on V, for a symmetric channel is shown in figure 11(b).
Increasing « also decreases V, since the layer is less permeable and the resistance
becomes larger.

5. Physiological applications and conclusions

The radius of a capillary is between 2.5 and 5 pm. The length of an endothelial cell
is 20-50 um. Thus, the aspect ratio for a capillary § is between approximately 0.05
and 0.3. The mean velocity of blood in capillaries is 7.5 x 1072 cms~!. The blood is
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assumed to be a homogeneous Newtonian fluid of density 1.05gcm™

0.01 poise. The typical Reynolds number is thus of the order of 1072,

The average thickness of the cells is 1-2 um (Satcher et al. 1992). The amplitude
of the endothelial membrane variations is approximately 1.5pum (Barbee, Davies &
Lal 1994) and the corresponding dimensionless wall amplitude is between 0.2 and
0.6. The thickness of the glycocalyx in capillaries is 200400 nm (Gretz 1995) up to
1 um (Silberberg 1991; Turner, Clough & Michel 1983). Hence, the dimensionless
wall-layer thickness € is around 0.2.

The glycoclayx is composed primarily of glycoproteins and proteoglycans and
also adsorbs plasma proteins, such as fibrinogen and albumin. There are no direct
measurements for the Darcy permeability K, within the layer. Estimates in other
biological materials have a wide range. K, is 1071 cm™ for mesentery (Levick 1987).
A fibre-matrix model (Tsay & Weinbaum 1991) estimates K, to be about 107" cm=>
for fibres with diameter 1 nm and spacing 7nm (as a molecular sieve to albumin).
Hence, K, ranges from 107 to 107'°cm? and the corresponding dimensionless
hydraulic resistivity varies as 10 <a < 10°. The solid component is usually less than
1% and we thus choose ¢ =0.99. Therefore, these parameters are within the ranges
to which our present model is applied.

We employ a model using biphasic theory not only to access the effective influence
of the porous medium, but also the elastic behaviour of the solid composition. We
solve pressure-driven flows for both the core and the layer using the lubrication
approximation in the small aspect ratio 8. The flow fields are solved up to O(8%). A
striking finding is that the existence of a porous layer may result in the formation of
trapped recirculation within the layer, depending on the range of the parameters such
as permeability and the wall phase difference, and this vortex is located in proximity
to the intercellular clefts where transendothelial transport occurs. Flow recirculation
does not occur at these parameter values if the layer is absent. It is more feasible
for a layer with low permeability. Our detailed analysis reveals that a layer with a
low permeability reduces the wall shear stresses so that the flow is more vulnerable
to adverse pressures. A consequence of recirculation is to increase residence times
of circulating substances around cell junctions that are susceptible to some arterial
diseases. However, for larger blood vessels, an increase in the Reynolds number leads
the recirculation to move upstream, which may influence the disease process.

The wavy geometry allows the stream to enter and exit the layer, which provides
a mechanism for convective transport between these two regions that otherwise have
only diffusive interactions. The estimated normal velocity V," =v" - n across the core—
layer interface is about 10~*cms™' for K, ~107'"cm? The corresponding Péclet
number Pe=V'b/D, where D is the molecular diffusivity, ranges from O(1072) to
0(10) for D from 107¢ to 10~ cm?s~'. This suggests that the convective transport
is important for large molecules where D <10~ cm?s~!. Though a large molecule
such as albumin normally does not enter the intercellular clefts, it may penetrate
the intercellular clefts when malfunctioned or diseased cells cause a wider cell—cell
junction which may allow a large molecule to pass through it, e.g. atherosclerosis (Lin
et al. 1988). Therefore, our model at least provides an estimation for the transport of
large molecules occurring in the above situation.

The contribution of solid to the flow system is only reflected by the solid fraction.
However, within the range of applications, the solid composition does not significantly
change the flow patterns. The solid displacements are determined solely by the flow
field and are much smaller than the layer thickness. The result reveals that the lower
the permeability, the larger the solid deformation. When red cells are present, the

and viscosity
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layer is expected to be highly compressed, which could result in amplification of the
solid deformation so that the interaction between the solid and fluid phases is no
longer as simple as in our present study. Clearly, in this case the permeability could
vary in space and changes the flow characteristics significantly (Feng & Weinbaum
2000).

This work was supported by NSF Grant CTS 9412523, BES 9820967 and The
Whitaker Foundation.

Appendix. Biphasic mixture theory
Governing equation in the porous medium
Let v stand for the fluid velocity inside the porous material, U, is the solid displacement
vector and Uy is the solid velocity. The volume fraction of the fluid is ¢. The equation
of the fluid mass derived by (Mow et al. 1980) gives
V-(¢v)=0. (A1)

Assuming constant ¢ reduces (A1) to the equation of continuity. Assuming
infinitesimal solid deformation in the porous material, and negligible inertia, then
the momentum equation for the fluid and solid phases are
V-T/ 4 k(U, — v)=0, (A2)
V-T° —k(u;, —v)=0, (A3)
where T/ and T° are the stress tensors for fluid and solid phases respectively,
k=pus/K, is the hydraulic resistivity with p, the fluid viscosity and K, the Darcy
permeability of the porous material. The stress tensors are constituted as
T/ = —¢pl + s (Vv + Vo©), (A4)
T =—(1—¢)pl + xV-ugd + pu,(Vu, +Vu ), (A5)
where p is the volume-averaged pressure, I is the identity matrix, x is a Lame
coefficient and u, is a shear modulus of the solid phase.
Conditions at the interface between the porous medium and a pure fluid
Hou et al. (1989) derived boundary conditions below at the interface between the
porous medium and a pure fluid. Let V denote the velocity of a pure fluid. The
conservation of the fluid mass flux across the interface, and the assumption of
continuous volume-averaged velocity in the tangential direction give, respectively,
on-(v—0’) =n-(V — %), (A6)
pt-(v—0) =t-(V—u), (A7)
where n and t are the unit normal and tangential of the interface, respectively. The
stress boundary conditions at the interface are
n«(T"+T)=n-t, (A8)

where T=—PI+ u.(VV +VVT) is the stress tensor of a pure fluid with the viscosity
. and pressure P. A further assumption made for the stress distribution between
the fluid and solid phases in the porous medium is

T, TL ¢
Tnst Tnsn (1 - ¢) ’

(A9)
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where T,,=n-T-t and T,,=n-T-n are the tangential and normal components of
the stress on the interface, respectively. Equation (A 9) means that the proportion
of the total stress in the porous medium borne by each phase is proportional to its
volume fraction. Using (A 9), the stress condition (A 8) can be expressed as

n-T' =¢n-t, (A 10)
or
nT=(1-¢)n-z. (A11)
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